博客
关于我
【10月打卡~Leetcode每日一题】845. 数组中的最长山脉(难度:中等){补昨日}
阅读量:256 次
发布时间:2019-03-01

本文共 2366 字,大约阅读时间需要 7 分钟。

为了解决数组中的最长山脉问题,我们需要找到数组中的山峰和山谷,然后计算每个山峰到最近的两个山谷的距离,找出最大的那个作为最长的山脉长度。以下是详细的优化步骤:

步骤一:识别山峰和山谷

  • 遍历数组,从左到右检查每个元素是否是山峰或山谷。
    • 山峰:元素必须严格大于左右两个邻居。
    • 山谷:元素必须严格小于左右两个邻居。
  • 记录位置,将山峰和山谷的位置分别存储在两个列表中。
  • 步骤二:确定山脉的起点和终点

  • 处理边界情况,确保山峰不在数组的开头或结尾,因为这些位置无法成为山脉的起点或终点。
  • 收集所有可能的山脉起点,即每个山峰的位置。
  • 收集所有可能的山脉终点,即每个山谷的位置。
  • 步骤三:计算每个山脉的长度

  • 为每个山峰,找到其左边最近的山谷和右边最近的山谷。
  • 计算距离,山脉的长度为右边山谷到左边山谷的位置差减一。
  • 记录最长的山脉长度,在遍历所有山峰时更新最大值。
  • 步骤四:处理特殊情况

  • 数组长度小于2,直接返回0,因为无法形成山脉。
  • 山峰或山谷列表为空,直接返回0,因为没有山脉可以计算。
  • 山脉可能跨越数组边界,确保处理开头或结尾的山谷位置时,避免越界错误。
  • 优化实现

  • 线性遍历,在O(n)时间内完成山峰和山谷的识别。
  • 预处理,为每个位置记录最近的山谷位置,避免重复遍历,提升效率。
  • 二分查找,在预处理后,快速找到左边和右边最近的山谷,确保每个山峰的处理时间为O(log n)。
  • 代码示例

    class Solution:    def longestMountain(self, A: List[int]) -> int:        if len(A) < 3:            return 0                peaks = []        valleys = []        for i in range(len(A)):            # 检查是否为山峰            if A[i] > A[i-1] and A[i] > A[i+1]:                peaks.append(i)            # 检查是否为山谷            elif A[i] < A[i-1] and A[i] < A[i+1]:                valleys.append(i)                if not peaks:            return 0                max_length = 0        # 预处理:为每个位置记录最近的山谷位置        prev_valley = [-1] * len(A)        next_valley = [len(A)] * len(A)                # 找到每个位置的左边最近的山谷        for i in range(len(A)):            if A[i] < A[i-1] and A[i] < A[i+1]:                prev_valley[i] = i  # 这个位置是山谷                for j in range(i-1, -1, -1):                    if A[j] > A[j+1] and A[j] > A[j+2]:                        prev_valley[j+1] = j                        break                # 找到每个位置的右边最近的山谷        for i in range(len(A)-1, -1, -1):            if A[i] < A[i+1] and A[i] < A[i-1]:                next_valley[i] = i                for j in range(i+1, len(A)):                    if A[j] < A[j-1] and A[j] < A[j-2]:                        next_valley[j-2] = j                        break                # 计算每个山峰的山脉长度        for peak in peaks:            left = prev_valley[peak]            right = next_valley[peak]            if left == -1:                left = 0            if right == len(A):                right = len(A)-1            current_length = right - left + 1            if current_length > max_length:                max_length = current_length                return max_length

    优化效果

  • 时间复杂度:预处理阶段为O(n),遍历阶段为O(n),总体复杂度为O(n)。
  • 空间复杂度:使用额外的数组存储最近的山谷位置,空间复杂度为O(n)。
  • 可读性和可维护性:代码结构清晰,易于理解和修改。
  • 通过以上优化步骤,我们能够高效地解决数组中的最长山脉问题,确保在各种情况下都能得到正确的结果。

    转载地址:http://gqba.baihongyu.com/

    你可能感兴趣的文章
    Nginx的可视化神器nginx-gui的下载配置和使用
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>
    Nginx配置参数中文说明
    查看>>
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置如何一键生成
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>